

EML 4502 FINAL PRESENTATION

25th April, 2023 "Design of shaker table mechanism for a micro-bio reactor"

Team 227B - Benchmark Bio Solutions

Adam Hays, Andrew Graeber, Crae Andrew, Domingo Alegria, Drew Meyerson, Snehal Misra, and Zachary Brown

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Meet the Team

Presentation Agenda

Hedgehog Concept

Customer Requirements

- Given 49 customer needs
 - Categorized and parameterized
- Table movement
 - 3 patterns, up to 350 rpm
 - Quiet
- Robust
 - Temperatures 0 °C to 70 °C
 - IPx5 waterproofing
 - Chemical resistant
 - 2 week endurance testing

- OD/FI Interrogation
 - Wavelength and intensity of light
 - Photoresistor for sensing

227B's Focus

Our goals / focus

- Thermal
 - Table must run continuously at its maximum-rated speed for two weeks in its most demanding shaker pattern in an environment maintained at 70 °C and 0 °C
- Waterproofing
 - All parts that could potentially be water infiltrated / damaged must be IP-X5 certified
- ODFI Integration
 - Shaker integrated OD/FI interrogation for illumination at proper OD and FI wavelength and intensity

Concerns

- Production-scale device cost of no more than \$400
 - 542P linkage prototype that our design dramatically improved upon already exceeded this estimate, at \$479.92

PROTOTYPE EVALUATION

A look at the EML4502 prototypes designed during the Fall 2022 semester

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Prototype Evaluation

Linkage Design was chosen

- Cheapest prototype option
- Robust mechanical interfaces, good for extreme environments / endurance
- DC motors integration is more viable
 - Motors spin continuously in a single direction

Slider Crank Kinematics

- Common for converting rotational motion to linear motion
- Displacement is a function of the rotation angle, $\boldsymbol{\theta}$

•
$$x = Rcos(\theta) + \sqrt{L^2 - R^2 sin^2(\theta)}$$

Slightly more complicated in two dimensions...

2D Linkage Patterns

	Linear	
	Cartesian: Velocity:	y = x $\omega_1 = -\omega_2$
	Phase:	$\phi_1 = \phi_2$
	Orbital	
	Cartesian:	$x^2 + y^2 = R^2$
	Velocity: Phase:	$\omega_1 = \omega_2 \\ \phi_1 = \phi_2 + 90^\circ$
I	Double Orbital	
	Cartesian:	$(x^2 + y^2)^2 = R^2(x^2 - y^2)$
	Velocity:	$\omega_1 = 2 \cdot \omega_2$
	Pridse:	$\psi_1 = \psi_2 + 90$

DESIGN

227B's design process for this iteration of the shaker table mechanism

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Mechanical Design

Motors

- Upright, keeps rotation plane of crank in line with shaker table
- Brushless DC optimal for long life, continuously turning applications

Waterproofing solution

O-Rings and Marine epoxy to seal off electronics

Thermal management

- Enclosed motors, need to conduct and convect heat out of pods
- No 3D printing components! Glass transition temperature is ~60 °C
- Other options include heat pipes and cooling plates
- Vibrational considerations

Mechanical – Motors

Torque Calculations

- Based on force to accelerate the rotating mass and frictional force of the 3 linear rails used
- $\tau_{min} = (TTE)(R)(R_f) = 0.1495 Nm$
- Team 542P was not conservative enough in their estimation
- Parameters: $\mu = 0.1$, W = 30 N, and $R_f = 15\%$

Electrocraft

- LRPX32-090V24-110-S010
- Brushless DC Planetary Gearmotor

Continuous Running				Peak	
Torque (N-m)	RPM	Current (A)	Torque (N-m)	RPM	Current (A)
0.47	722	5.40	2.34	155	23.5
0.47	722	2.70	2.34	155	11.8
0.47	722	1.35	2.34	155	5.9

Mechanical – Waterproofing

- IPX5 Definition:
 - Protected from water sprayed from any direction around the enclosure
- O-Rings:
 - Parker O-Ring Handbook
 - Male glands, face seals
 - $\blacksquare R \ge 6 \cdot W$

- High Speed Shaft Seals
- Marine Sealant:
 - Used to seal wire pathways
 - Protect hall effect sensors

Mechanical – Thermal Management

Thermal Calculations

 Steady state, check operating current against max current before burnout

$$\dot{Q}_{out} = \frac{T_{motor} - T_{amb}}{\sum R} = I_{max}V$$

Thermal Resistances

•
$$R = \frac{\ln\left(\frac{D_i}{D_o}\right)}{2\pi LK}$$

Heat sink specified for flow rate

•
$$R = \left(\frac{N}{R_h}\right)^{-1}$$

System	Low Temperature	High Temperature
Electrocraft Motor	−40 °C	100 °C
Microbio Reactor	0 °C	70 °C

Mechanical

- Thermal Management

Heat sinks

Stack heat sinks in parallel

$$\bullet R_h = 4.7 \ \frac{K}{W}$$

- Forced convection
 - Rated for 200 LFM
 - IPX5 Rated fans deliver 2.1 cfm or 397 LFM
 - R_h will be lower
 - Comps show ratings of $R_h = 1.0 \frac{K}{W}$ at flow rates of 400 LFM

Parameter	Value
<i>R</i> ₁	$0.00743 \ \frac{K}{W}$
<i>R</i> ₂	$0.00209 \ \frac{K}{W}$
R _h	4.7 $\frac{K}{W}$
Ν	8
<i>R</i> ₃	$0.5875 \ \frac{K}{W}$
I _{max}	2.094 <i>A –</i> 9.292 <i>A</i> *

 * Higher max current is calculated from a 1.0 K/W thermal resistance on the heat sinks

Mechanical – Structure

Vibrations

- Cantilevered motor housings with offset spinning masses will cause vibrations
- Rubber washers dampen structural connections
- Reducing Friction
 - Ball bearing driven linear rails guide motion
 - Brass PTFE lubricated bushings reduce wear at linkage bar – shoulder screw interface

Electrical Design

- Motor function components:
 - Microcontroller- Arduino Mega chosen for versatility and familiarity
 - Motor controller- Two 3-Phase BLDC Motor driver with 20A max current
 - Encoders- 5V Hall encoder for position feedback
 - Hall effect sensors- 5V Hall effect switches for zeroing
- User interface components:
 - 4 Push buttons for pattern selection
 - IO-turn potentiometer for precise velocity tuning
 - LCD for user feedback and status
- ODFI components
 - UV and Visible LED
 - Photoresistor for measurement
- Power Calculations:
 - Total power consumption ~ 560 W
 - 24V-720W AC-DC converter

Circuit Functionality

- Four integrated circuits controlled by a microcontroller through relays and step-downs.
 - 24V Motor circuit-Motors, Motor controllers
 - 12V Fan circuit- 12V fans
 - 5V Arduino circuit- Logic, user interphase, and sensor measurement
 - OD/FI circuit- LEDs and photoresistor

Electrical

– Diagram

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

PCB design

Culture Interrogation

Why do we need this?

Customer Need	Requirement Text
38	Shaker integrated OD/FI interrogation for illumination at proper OD and FI wavelength and intensity of fluid aliquots in the wells.
39	Shaker integrated OD/FI interrogation for illumination at proper OD and FI wavelength and intensity of fluid aliquots in the conical tubes.
41	Shaker integrated OD/FI interrogation with access for optical sensors opposing illumination sources.
44	An aliquot of fluid interrogated by the OD/FI system must return the same, correct OD and FI value regardless of which well or conical tube it is located in.
45	OD/FI system must be programmable where the user can select test type and test location.
46	OD system must measure sample turbidity within ± 15% of calibration fluid values over a range from 0% to 100%. Higher accuracy is preferred.
47	FI system must measure sample vitality to within $\pm 15\%$ of calibration fluid values over a range from 0% to 100%. Higher accuracy is preferred.

- Optical Density (OD)
 - Visible light (560 nm) illuminates samples obscured by cell culture growth
 - The light is then measured and recorded with LDR
- Fluorescent Intensity (FI)
 - Ultraviolet light (370 nm) excites quinine in samples
 - Resulting quinine fluorescence emission (450 nm) is measured and recorded with LDR

OD/FI – Implementation

LED PCB Design Process

23

- OD/FI Implementation
- PCB Wiring Diagram
 - 5V Input Voltage
 - 24 LEDs per circuit
 - Visible LED Matrix
 - Ultraviolet LED Matrix

_					
	1 1 2	13	1 4		
۸	LED1 PXXL9P1LVF3G12359NM LED3 PXXL9P1LVF3G12359NM LED3 LED2 PXXL9P1LVF5G12359NM LED7 PXXL9P1LVF5G12359NM	NF3G12 365NM LED19 P2833P1U/F3G12 365NM P2833P1U LED11 LED11 P2833P1U/F3G12 365NM P2833P1U/F3G12 365NM P2835P1U		G12 365NAA G12 365NAA	A
			VF3G12 365NM P2359HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G1299595HUVF3G129959HUVF3G12999HUVF3G12999HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129959HUVF3G129999HUVF3G12999HUVF3G12999HUVF3G12999HUVF	G12 365NM	-
в	POSSIGNUAF3012 SISNM	VP3012 365NM P2835FHUVF3012 365NN P2855FHU	VF3012 385NM P2835PHUVF3012799BANKHUVF3	GND +5V	в
	LE026 19-31(GPC-JF, MARIAT 19-31(GPC-JF)	. NURRAT 1521 GPC-FL NURRAT 1521 GPC-FL NURRAT	LED44 IP-310PC-FL1M08/3T 19-310PC-FL1M08/3T		-
c			LED43 19-21/GPC-FL1M28/3T LED42 19-21/GPC-FL1M28/3T 19-21/GPC-FL1M28/3T 19-21/GPC-FL1M28/3T	GND	c
		.1M2803 19-210PC-FL1M2803T 19-210PC-FL1M2803T	LED41 19-210PC-FL1M28/0T		-
			TITLE: OF	D/FI Wiring Schematic	REV: 1.3 iolutions Sheet: 1/1
4	1 2	3	4		in by: Domingo Alegna

- PCB Design
 - Visible and UV LED Loops wired separately
 - LED placement for well plate and test tube illumination
 - Allows user to switch between
 Visible & UV LEDs

OD/FI – Implementation

Sensing Equipment

- Use of LDR to sense light for OD/FI
- Spectral Range of 400 700 nm
- Spectral Peak at 520 nm

LEDs

Outsourced LED & PCB Manufacturing

Parameter	Visible LED	Ultraviolet LED	Unit
Forward Voltage	2.05	3.30	V
Forward Current	25	150	mA
Dominant Wavelength	560	370	nm

LDR

OD/FI – Implementation

OD/FI Sensing

- Robotic arm used for positioning
- NOEL Mount Provided by lab
- LDR Housing design
 - Connect LDR to NOEL mount
 - Interface with Test Tube viewing window
- LDR sensing controlled with Arduino/Breadboard

NOEL Mount

LDR Housing

ODFI – Implementation

Designed Test Tube & Well Plate Mount

- Optical Density (OD)
 - Clear top test tubes / well plate
- Fluorescent Intensity (FI)
 - Side view port through test tube

Hub initialization

- Hall effect sensors detects the magnets and sets the motors starting positions at the Hall effect sensor.
- Motor steps until hall effect sensor is triggered by the magnet.

- Motor Speed Control
 - Potentiometer sets target velocities in RPM.
 - Interrupts track encoder's pulses measuring the hub's position and velocity.

• UI control

- LCD shows system status, selected pattern, and RPM.
- A button for each pattern, when selected the pattern will be displayed.
- OD/FI measurement is taken when table is stopped and continues to pattern selection. Measurement is skipped if the start/stop button is held.

- Flowchart

PROTOTYPING & MANUFACTURING

Realization of the shaker table design, prototyping changes, and manufacturing updates

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Manufacturing

Required processes

- Most parts waterjet, then post-processed
 - Tapping holes
 - Breaking edges
- Mill & lathe operations (motor housings and hubs)
- CNC machining was used to cut o-ring grooves
- 3D printing
 - Intended for rapid prototyping
 - Strength & heat tolerance is not needed (UI Box)
 - Was performed in lab using PLA and PETG

Prototyping Redesign

- Servocity Motors
 - 12V brushed motors
 - Stall torque of 5.4 kg-cm
 - No-load speed of 1620 RPM
- Electrical Changes
 - Downsized power supply
 - Fewer Integrated circuits
 - Brushed motor controller
- 3D printed parts
 - Not eligible for most tests due to material hazards

PERFORMANCE EVALUATION

Testing the capabilities of the shaker table prototype to assess customer needs

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Pattern Functionality

No controllers

- For prototyping
- Voltage "controls" speed, polarity controls direction
- Controllers
 - Motor controllers and control algorithms in place

Video

37

IPX5 Waterproofing

- Adhesive water contact indicator tape was placed along sealed critical compartments
- Spray test
 - Water hose delivered ~12.5 LPM of water at ~30 kN/m² for 4 minutes.

- Failure at cap seal locations
 - Looser tolerances on 3D printed parts
 - No tight seals/o-rings in critical compartments due to manufacturing delays
- Pass
 - Critical compartments sealed by rubber washers

OD/FI Sensing

Preparing Chemical Samples

Milk

- OD Testing
- Whole Milk diluted with distilled water
- Concentrations ranging from 0 0.2%
 Milk by volume
- Quinine
 - FI Testing
 - Dissolve in 0.05 M Sulfuric Acid (H₂SO₄)
 - Concentrations ranging from 0 9 ppm of Quinine in H₂SO₄

OD/FI Sensing

Creating calibration curves for OD and FI LDR measurements

Unknown sample testing

Temperature Resilience

Hot temperature testing

Not Tested

Customer Need	Requirement Text
36	In the mode with the control/display unit detached, the shaker can run continuously at its maximum-rated speed for two weeks in its most demanding shaker pattern in an environment maintained at 70 °C (158 °F) [running at 120 °C (250 °F) is preferred, but not required].

- Hot

Procedure

- Oven set to >70°C
- The shaker maintain at least 350 RPM throughout the test
- Manufacturing Delays
- Prediction:
 - As is: 3d parts and motors will **Fail**
 - As designed: Pass

Temperature Resilience

Cold temperature testing

Not Tested

Customer Need	Requirement Text
37	In the mode with the control/display unit detached, the shaker can run continuously at its maximum-rated speed for two weeks in its most demanding shaker pattern in an environment maintained at 0 °C (32 °F).

– Cold

Procedure

- Freezer set to 4°C
- Table inside for 90 minutes
- Demonstrate double orbital at 6 rpm
- Prediction:
 - As is: Pass*
 - As designed: Pass

*based on temperature considerations

Speed Overclocking

Designed

- Minimum speed requirement: 350 RPM
- Linear and orbital patterns: 700 RPM
- Double orbital pattern: 350 RPM
 - One motor moves twice as fast as the other, pattern speed is based off slowest motor.

Prototype

- Servocity motors: 1500 RPM
- Linear and Orbital patterns: 1500 RPM
- Double orbital pattern: 750 RPM

Customer Need	Requirement Text
24 - 26	Capable of uniformly shaking well plates and tube racks with the three orbital patterns: i. Adjustable and infinitely variable revolution speeds reaching 350 rpm (up to 1,200 rpm nice to have but not required). ii. Adjustable orbits up to 25 mm on the diameter.

- Not formally tested
- Prediction :
 - As is: Pass
 - As designed: **Pass**

Acoustic Emittance

Procedure

- Measured at distance of 15 cm
- Cannot exceed 50 dB
- Prototype performance
 - Testing with the power supplies concluded the prototype is quiet
 - Bearings will dampen some vibrations and sound

Customer Need	Requirement Text
19	Unit noise cannot exceed 50 decibels (dBA weighting) measured 15 cm in every direction from the device.

- Not formally tested
- Prediction :
 - As is: Pass
 - As designed: **Pass**

Drop Survivability

Drop

 Table falls from a height of 75 cm onto concrete floor

Pass/Fail

- Unlikely due to 3D printed parts and weight of metal parts
 - Large shock forces induced by drop
 - Aluminum parts likely to deform
- Lab equipment with bio-cultures
- Researchers unlikely to drop

Customer Need	Requirement Text
13	Shaker must survive falling from a 75-cm-tall lab bench onto a concrete floor without damage (i.e., it functions after being accidentally knocked off a lab bench). It is acceptable for the cowling enclosure to be physically damaged / dented by the fall if this part is easily replaced.

- Not tested
- Prediction :
 - As is: Fail
 - As designed: Fail

REVIEW OF DELIVERABLES

Which customer needs were satisfied, and a future improvement plan for our product

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Customer Needs Review

Need Category		Satisfied	Untested	Not Satisfied
Actuation	(4)	3	1	0
Admin	(7)	2	4	1
Control	(11)	5	5	1
Interface	(6)	3	2	1
OD/FI	(7)	1	5	1
Structure	(14)	10	4	0

Unsatisfied Needs:

- 1. Cost (\$400)
- Fluorescent intensity accuracy (15%)
- 3. Supports test tubes and well plates simultaneously
- 4. Safety auto-shut down

Improvement Plan

Cost

- Budget was \$400
- Prototype ~\$750
- Final Design ~\$2,000
- Manufacturing
 - Metal/machined parts take a long time to manufacture
 - Substitute for OTS brackets, etc
 - Higher tolerances needed for thermal and waterproofing testing

Electrical

- Custom PCB
- Simplified design, less room for human error
- Reduce form factor, improve performance, and reduce cost
- ODFI
 - Higher intensity LEDs, more sensitive LDR
 - Replace acrylic lens with a UV transparent material

Questions?

