UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

637 Shaker Table

Group 637U

Adam Paroff, Alex Bailey, Andrew Michael, Chris Crouch, Kaio Bui, Michael "Jeff" Glynn, Taylor Fisher

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Hedgehog Concept

 A standardized shaker table that emphasizes manufacturability and reduces manufacturing time and assembly costs without compromising quality or performance.

UF

Department of Mechanical & Aerospace Engineering

Key Product Specifications

Designed for long-term operational laboratory use

- Customer Needs: (1, 8, 11, 17, 18, 19, 20, 21, 23)
- Optimal size, noise rating, waterproofing, and safety for laboratory use

Exceptional Functionality

- Customer Needs: (4, 13, 14, 24, 25, 26, 36, 37)
- Product is functional in linear, orbital, and double orbital patterns under extreme conditions

Nominal Stock Sizes for Components

- Customer Need 9
- Ensure simple and quick manufacturing and assembly of components with parts already composed of stock sizes

Base Subassembly

- Blocks mounted to base plate
- Rods and Collars allow for movement of well plate interface

Drive System

- Belt Driven System
- Motor casing provides IPX5 certification

Outer Casing

6

- Limit the ability for user to get injured
- Provides a more aesthetic look

Well Plate Interface

- Well plate interface allows for 6, 50 mL test tubes, 6, 15 mL test tubes, and a well plate simultaneously.
- All parts in the assembly are nominally sized for easy manufacturing.
- Robust and sturdy design

UF

Control Interface

- Houses all the electronics
- Holes for controls
 - 3 buttons, a potentiometer, and a power switch to control the 16x4 LCD screen
- Other features include places to plug in power and run wires to the limit switches and motors

User Interface

- Easy to use menu
- Allows user to select all cycle parameters
 - Pattern (Linear, Orbital, Double Orbital)
 - Speed
 - Duration
 - Size of pattern

Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Electrical Schematic

Performance Evaluation #1:

UF

IP-X5 Infiltration Test

Performance Evaluation #2:

12

UF

OD/FI Integration Test

Performance Evaluation #3a:

Cold Soak Temperature Test

Material	Temperature
Aluminum 6061	N/A
PETG	-10°C
Nylon	-50 °C
Stainless Steel	-75 °C
Low Carbon Steel	-30 °C
Neoprene	-45 °C
Zinc Plated Steel	-100 °C
DC motors	-20 °C
Electrical Wires	-10 °C

Performance Evaluation #3b:

Overclock & High Temperature Test

Material	Temperature
Aluminum 6061	150 °C
PETG	80 °C
Nylon	80 °C
Stainless Steel	500 °C
Low Carbon Steel	315 °С
Neoprene	120 °C
Zinc Plated Steel	210 °C
DC motors	90 °C
Electrical Wires	80 °C

Performance Evaluation #4: Drop Test

Impact Force and Impact Velocity

$$F = ma \qquad v_f^2 = v_o^2 + 2ax \\ F = 2.07kg * \frac{9.81m}{s^2} \quad v_f^2 = 0 + 2 * \frac{9.81m}{s^2} * 0.75m \\ F = 20.3N \qquad v_f = 3.84m/s$$

UF

16

Design Highlights

Guide Rail Resizing

$$\delta = \frac{FL^3}{192EI} = \frac{(30\,N) * (0.1016\,m)^3}{192 * (1.9 * 10^{11}\,Pa)(1.26 * 10^{-11}\,m^4)} = 6.86 * 10^{-5}\,m = 0.0686\,mm$$

Design Highlights

DC Motor Selection

• 30:1 Metal Gearmotor 37Dx68L mm 12 V with 64 CPR Encoder

$$\begin{split} F_f &= \mu * F_N = 0.54 * 20.3 \ N \\ &= 10.963 \ N \\ T_{REQ} &= F_f d = (10.963 \ N)(7.5 \ mm) \left(\frac{1 \ m}{1000 \ mm}\right) \left(\frac{141.6 \ in \ oz}{1 \ Nm}\right) = 11.64 \ in \ oz \end{split}$$

 $T_{MAX} = 42 in oz > T_{REQ} = 11.64 in oz$

Evolution of Design

3D Printed Parts to 6061 Aluminum

- 3D printed components converted to 6061 Aluminum to increase strength and durability of components
- Tensile Strength: 90 MPa for Aluminum compared to anisotropic 37 MPa for PLA and 53 MPA for PETG

Electrical Circuit Development

- Temporary breadboard changed to a more permanent soldered perfboard
- Safer and more permanent use
- Slowly wired in more components such as OD/FI integration and controls for the user interface

Cost Table Summary

Totals	Cost
Prototyping Cost	\$886.87
1000 Unit Production Scale Cost	\$362.29
Significant Items	Cost
DC Motor	\$51.95/1 (\$47.49/5)
Everbeam UV Black Light	\$48.99/1
Belts	\$24.21/1

Value Proposition – Why Us?

- Simplified design enables an easier and cheaper manufacturing process.
- Efficient shaker table design enables effective testing of equipment with high accuracy.
- Cost-effective design allows for desired profitability from the customer

Thank you! Questions?