

CEO: Jason Algeo CFO: Seamus Dougherty COO: Melanie Herrera

Alec Feller, Alexis Sturm, Devin Haber, Jacob Vetter, Michael Carr & Robert Hilton

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Presentation Outline

- Customer Needs
- Our Hedgehog Concept
- Evolution of Product
- Product Specifications
- Product Features
- Electrical Diagram and Layout
- Software Overview
- Test Protocols and Results
- Cost Overview
- Potential Improvements

Customer Needs

- Affordable
- Functional
- Easy to use
- Long-lasting
- Accessible
- Universal
- Customizable
- Smart-feature
- Safe to use
- Potential AI Implementation

Hedgehog Concept

By designing our product to be majority 3D printed and allowing for in-house manufacturing in developing countries, we are improving the lives of people who would otherwise be forced to struggle every day with belowelbow deformities.

Evolution of Our Product

- Started off design concept with individual design sketches by each group member
- Used binary trade study to select best overall design

Hand Articulation Sketch

Forearm Sketch

Limb Attachment Sketch

Evolution of Our Product

		I	Hand				
Cost	Aesthetically Pleasing	Functionality	Ease of Repair	Reliability	Ease of Use	Durability	Weight
Α	В	С	А	E	F	А	А
	В	С	В	Е	F	G	В
		С	С	С	С	С	С
			D	E	F	G	Н
				Е	E	Е	Е
					F	G	F
						G	G
							Н

Metric	Count	Weight
Cost	3	0.11
Aesthetically Pleasing	3	0.11
Functionality	7	0.25
Ease of Repair	0	0.00
Reliability	6	0.21
Ease of Use	4	0.14
Durability	4	0.14
Weight	1	0.04

Metric	Count	Weight
Cost	5	0.18
Aesthetically Pleasing	0	0.00
Functionality	4	0.14
Ease of Repair	3	0.11
Reliability	6	0.21
Ease of Use	4	0.14
Durability	5	0.18
Weight	1	0.04

Metric	Count	Weight
Cost	2	0.07
Aesthetically Pleasing	1	0.04
Functionality	7	0.25
Ease of Repair	0	0.00
Reliability	6	0.21
Ease of Use	4	0.14
Durability	4	0.14
Weight	4	0.14

riano								
	Cost	Aesthetically Pleasing	Functionality	Ease of Repair	Reliability	Ease of Use	Durability	Weight
	А	А	А	А	Е	А	G	А
		В	С	D	Е	F	G	Н
			С	С	С	F	G	С
				D	Е	D	G	D
					Е	E	Е	Е
						F	F	F
							G	G
								Н

Hand									
	Cost	Aesthetically Pleasing	Functionality	Ease of Repair	Reliability	Ease of Use	Durability	Weight	
	А	А	С	Α	Е	F	G	Н	
		В	С	В	Е	F	G	Н	
			С	С	С	С	С	С	
				D	Е	F	G	Н	
					E	E	E	Е	
						F	G	F	
							G	Н	
								Н	

Hand Articulation Binary Trade Study

Evolution of Our Product

Initial design prototypes

Cardboard Prosthetic Assembly Prototype

Initial CAD Prototype

Evolution of the Forearm Housing

Original design

 6 OTS screws to
 close the forearm housing

Updated design

- 4 3D-printed shrink
 cap fasteners to close the forearm housing
- Closed forearm attaches palm and limb attachment

Evolution of the Limb Attachment

 Original design

 2 OTS screws fasten limb attachment to Velcro arm attachment

Updated design

- 2 3D-printed snapfasteners attach limb attachment to Velcro arm attachment
- Provides 360degree rotation for elbow bending

Key Product Specifications

- Weight 1.93 lbs.
- Motors (x4) 18.0 kg-cm (15.62 lb-in)
- Batteries (x3) 1800 mAh | 9V
- Battery life: 4+ hours
- Recharge time: 2 hours
- Structural load sustained: 60+ lbs.
- Material: 3D-printed PETG

Motor Spool Diameter Calculations

- Distance line must be pulled for full finger actuation: 1.1 inches
- Motor rotation: 120 degrees
- Diameter necessary for finger actuation: 1.05 inches

$$D = \frac{1.1 \text{ in}}{\left(\frac{120^{\circ}}{360^{\circ}}\right)} \left(\frac{1}{\pi}\right) = 1.05 \text{ in}$$

Motor Torque Determination

Free Body Diagram of the Finger Motor Pairing

Motor Requirements vs. Actual Motor Specifications

12

Factor of Safety

- Assuming 20 lbs. impact to forearm fastener
- The actual force the fastener can withstand is 67.5 lbs.
 - Based on testing from performance evaluation 2

$$F_i = 20 \ lbs$$
$$F_a = 67.5 \ lbs$$
$$FOS = \frac{67.5 \ lbs}{20 \ lbs} = 3.4$$

Key Product Features

- 3 subsystems
- 3D printed parts replaced OTS parts
 - Easy manufacturability & more accessibility
- BOA Lacing system
 - Ease of use & wide range of fit
- Myoelectric sensors (EMG)
 - Allows for intuitive user control
 - Later AI implementation
- Rotating Thumb
 - Allows for functionality
- Rechargeable batteries
- Manual override buttons
- On/Off Switch

Hand Subassembly - Overview

- Fingers are attached to palm with press fit rod
- Thumb is attached with press fit to motor shaft
- Top of palm slides into slot on the bottom palm
 - Forearm attaches over the palm holding it in place without fasteners

Hand Subassembly - Finger and Thumb

- Opening/closing is powered by tendon driven system
 - Fishing line is tied at the fingertip
 - Line is strung through channels on the bottom side of fingers
 - Rubber bands are placed in channels on the top side of the fingers
- Steel pins are used as joints
 - Press fit between the pin and the middle 3D-printed finger piece

Hand Subassembly - Palm Interior

- Raised guides are extruded off the base of the palm
 - Guides for the fishing line
 - Swivel attaches fingers 1-3 together
 - Finger 4 actuated by 1 motor
 - Thumb actuated by 2 motors
- Angled platform for the motor
 - Motor connects to thumb to actuate thumb rotation

Forearm Housing - Overview

- Houses almost all electronics and mechanical components
- Fishing line tied through to motor spools
- Top and bottom of housing close over the hand and limb attachment

Forearm Housing – Subassembly Fastening

- 3D-printed fasteners secure limb attachment and palm in place
- Dust and waterresistant casing
- Manual controls mounted on forearm top

Motor Selection and Electrical Component Placement

- Servo motors used for finger actuation and thumb rotation
 - A7090 Brushless Low Profile Metal Gear HV Servo
- Torque chosen based on force necessary to pull fishing line
 - 18 kg-cm (15.62 lb-in)
- 3D-printed spools
 - Lines are connected to spools
 - Reel in line when motor is on
- Wired to back of forearm, connected to Arduino

Limb Attachment - Overview

- Flexible PETG geometry
- BOA Fit System for tightening
- Internal foam adhesive padding for comfort
- 3D-printed hinges
- Velcro strap for upper-arm support
- Openings for myoelectric cables

Electrical Layout

- Three 9V Batteries powering Arduino and motors
- 4 myoelectric sensors, analog inputs
 - Represented as potentiometers
- Manual controls
 - o On/Off Switch
 - 2 push buttons open and close grip
 - Potentiometer cycle through grip presets

Electrical Schematic

Myoelectric Sensors (EMG Control)

- Reads electric pulses inside muscles
- Provides analog input to Arduino
- 4 different locations provides more data
- Placed along residual limb
- Wired through limb attachment
- Flex inner arm for close grip
- Flex outer arm for open grip

Myoelectric Sensors Improvements

Noise filtering

- Current data is jumpy
- Need to filter input for consistent grip
- Artificial Intelligence Implementation
 - Can identify user's desired grip
 - Filters EMG inputs intelligently
 - Outputs desired grip configuration
- Inconsistency with sensor placement
 - Varies from user to user
 - Can change values of inputs

Current Code Structure

- Initialization sets threshold values
- Potentiometer selects desired grip
- Myoelectric sensor data is filtered (low-pass and high-pass)
- Inner arm flex closes grip
- Outer arm flex opens grip
- Output grip depends on potentiometer position
- Open/Close override buttons
- On/off switch to disconnect circuit

- Customer need #6
 - Achieve as many hand grasps as possible
 - Ability to handle variety of everyday objects
- The test was broken up into 3 sections
 - Gripping Success Test
 - Rotation Test
 - Shake Test
- 4 unique objects tested
 - Water bottle, Expo marker, lacrosse ball, and phone
- 98% success rate

- Customer need #23
 - Resistant to recurring impact
- Tested strength of 3D-printed fasteners
- Fasteners achieve ultimate failure at ~67.5 pounds

- Customer need #15
 - 3 hours of heavy use between recharges
- Tested lifespan while cycling through grip configurations
- Battery lifespan of 4 hours and 35 minutes

Product Demonstration

Cost Table Summary

- The total cost to produce one prototype was \$779.58. This is safely below the \$1500 limit set for developing a prototype R&D artifact.
- The total cost for a representative batch manufacturing run was \$695.52. It can be seen that the per-unit batch cost is less than the cost associated with developing a single prosthetic arm prototype (\$779.58).

Prototype Cost

Cost Description	Qty	Unit	Unit Price	Subtotal
OTS Parts	-	Total Packs	\$766.22	\$766.22
3D Printing	-	-	\$12.78	\$12.78
Energy	3.44 kWh	\$/kWh	0.17	\$0.58
Assembly Cost	-	-	-	\$0.00
			Total Cost	\$779.58

Per-Unit Batch Cost

Cost Description	Qty	Unit	Unit Price	Subtotal
OTS Parts	-	Total Individual Parts	\$679.91	\$679.91
3D Printing (10% discount applied)	-	-	\$11.50	\$11.50
Energy	3.44 kWh	\$/kWh	0.17	\$0.58
Assembly Cost	0.06 h	\$/h	56.74	\$3.53
			Total Cost	\$695.52

Future Potential

Global Grip Solutions'[™] design should be integrated into future EML4502 students' projects because of the following:

- Working prototype
- Unique Hedgehog Concept
- Creative features
 - BOA Fit System
 - Foam padding
 - 3D-printed fasteners
 - Myoelectric sensors
- Potential for AI Implementation

Looking Forward

- AI Neural Network Implementation
- AI Training by GGS[™] rather than the user
- Tactile Sensor Feature Addition
- Human-like aesthetics and contouring
- Thumb redesign for higher functionality
- Consider wear of motor spools
- Fishing line and elastic rubber bands replacement

Conclusion

- Functional, affordable, and highly accessible for a wide range of users
- Utilizes 3D printing, myoelectric sensors, and the potential for artificial intelligence implementation
- Fits users of different sizes and residual limb geometries and is colorcustomizable
- Value proposition focuses on intuitive functionality and high accessibility, built to be fully 3D-printed in developing countries
- Protected by trademark and IP protection

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE