UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

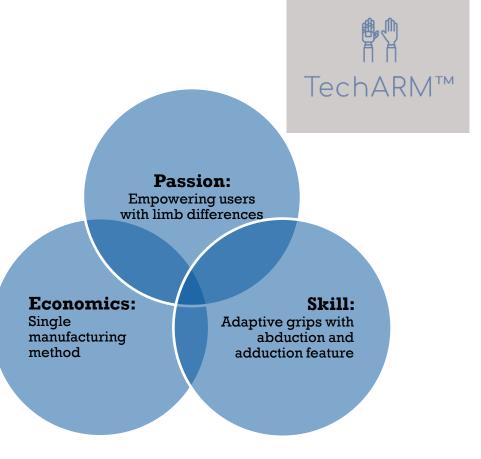
Techtouch

MTOA-2: AI Prosthetic Arm

Nathaniel Fuller (CEO), Madysen Wiley (CFO), Emma Cushing (COO), Rachel Gallagher (COO), Eduardo Artiles, Joshua Hebert, Garrett Page, Raphael Moise, Jake Pratt

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Overview


UF

- Hedgehog Concept
- Product Specifications/Key Dimensions
- Design Highlights
- Evolution of Design
- Electrical Schematic
- Code
- > Testing
- Cost Summary
- Future Improvements

Hedgehog Concept

UF

Our Goal: Develop an affordable prosthetic for those with trans-radial amputations allowing multiple grips to support the self-sufficiency of users.

Department of Mechanical & Aerospace Engineering

Product Specifications Customer Needs

- The prosthetic must achieve as many hand grasps as possible; grasps can be found in Spiers et al (2021).
- Prototype R&D artifact as-built and as-tested must not consume more than \$1500 worth of raw material and individual test components.
- The user attachment interface is for a trans-radial amputation and must accommodate a range of trans-radial arm amputation shape profiles.
- A sustainable profit margin must exist between the total projected product cost to produce and the final commercialization price of no more than \$4000.
- The user attachment interface must comfortably accommodate sizes ranging from child to adult.
- The user is able to form and release grasps via physical controls on the arm.

Department of Mechanical & Aerospace Engineering

Product Specifications Customer Needs Continued

- \geq The color of the device is user customizable.
- Exposed device features cannot catch on any moving part of the device. \succ
- \geq The object grasping interface must release any grasped object once a task has been deemed completed by the user.
- In the event of an emergency, a manual override safety feature must be \geq easily accessible to the user to immediately power-down the prosthetic.
- The device must be cordless while in operation. \geq
- Heavy operational use between recharges must exceed 3 hours. \geq
- The device must be easily and rapidly rechargeable by a single-handed \geq user using power sources found in the typical U.S. home environment.

Product Specifications Customer Needs Continued

- The device must be easily repaired using basic shop tools and fabrication services available in developing countries.
- > Device must be resistant to dust and water.
- > Device must be resistant to reoccurring impact.
- Access to, and maintenance of, inner components must be made easy for a single-handed user.
- The device must fulfill U.S. Food & Drug Administration (FDA) requirements to be categorized as a "Class II (special controls)" device [2].
- The end-user must be able to easily attach and remove the prosthetic by themselves.
- > Operating noise must not exceed 70db.

UF.

Department of Mechanical & Aerospace Engineering

Product Specifications Customer Needs To Be Met in Future

Weight of any complete arm attached assembly must not exceed 2 lbs.

While holding an object, the object grasping interface must apply only a reasonable level of force required to perform the intended action

The prosthetic must include a "smart" feature that allows the user to form and release grips without using the physical controls on the arm.

Key Dimensions

UF

- Forearm length: 7.75"
 - Average forearm length: 9.5"
- Cinching mechanism diameter: 3.75"
 - Measured the largest forearm diameter
- Palm width: 4.25"
 - > Average palm width: 3.1"
- > Bicep attachment diameter: 4.75"
 - > Tested on all members

Design Highlights

UF

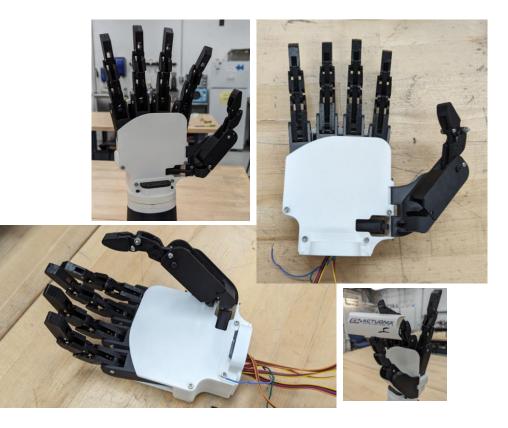
- > Adduction and Abduction
- > Manual wrist rotation
- > Adjustable forearm cinching mechanism


Evolution of Design: Preliminary Grasping Mechanism

Prototype 1 proof of concept

UF

- Prototype 1 and 2 durability
- Prototype grip effectiveness
- Preliminary calculations

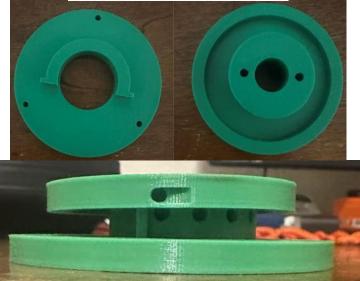


Evolution of Design: Final Grasping Mechanism

Improved shape

UF

- Increased durability
- Water resistance features
- Dowel pins connect finger links


Evolution of Design: Preliminary Wrist

- Originally motorized
- > 4 major parts

UF

- Pin pulled radially
- Relatively complex pin geometry
- Assembly issues
- Smooth sliding faces

Department of Mechanical & Aerospace Engineering

Evolution of Design: Final Wrist

- \succ Pin pulled axially
- Simpler overall geometry
- Countersink holes and springloaded pin
- Improved grip, and rotation restrictors

Evolution of Design: Residual Limb Attachment

- Large diameter
- Simple geometry
- Bolt fasteners
- > Attach to the forearm

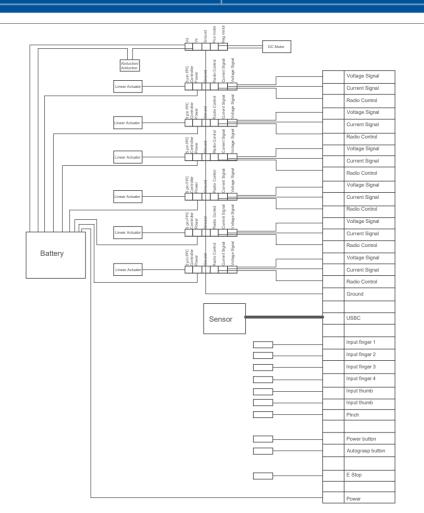
Evolution of Design: Final Residual Limb Attachment

- Smaller diameter
- Geometry change
- > Rivets

UF

Cinching mechanism
Tapered teeth

Evolution of Design: Final Assembly


Electrical Schematic

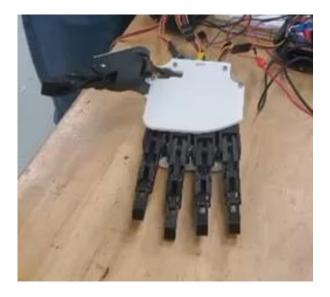
> Battery

UF

- > Raspberry Pi
- Sensor/Smart feature
- Motor controllers
- ➢ 6 linear actuators
- > DC motor

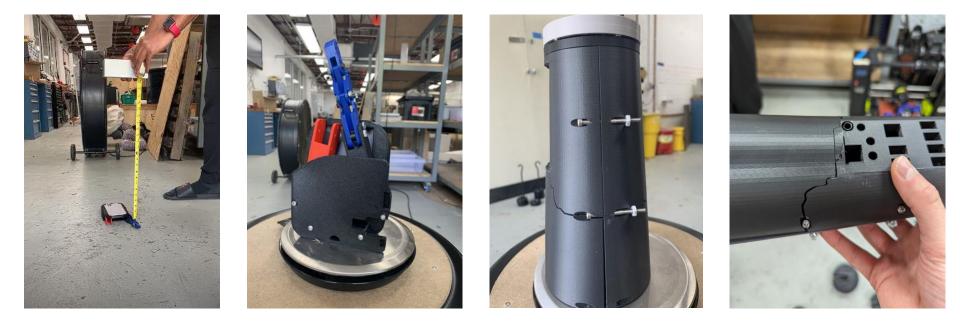
> Inputs

Code


UF

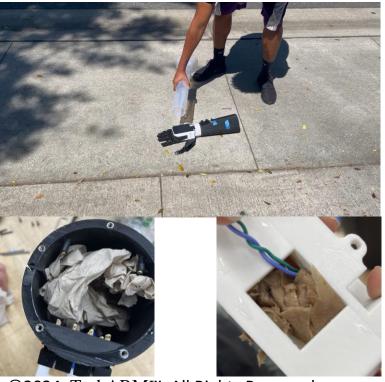
6 Actuators

- 2 input pin switch states
- 3.3 V, 1kHz PWM output signal
- Motor driver PWM voltage control


DC motor

- 2 input pin switch states
- 2 output pin high/low states
- 3.3 V, 1kHz PWM signal speed control

Department of Mechanical & Aerospace Engineering


Performance Evaluation #1 Impact Test – Post testing imagery

Department of Mechanical & Aerospace Engineering

Performance Evaluation #2

Water/Dust Testing

Herbert Wertheim College of Engineering

Cost Summary Cost Table: Prototype

	Material/Process	Cost (\$)
Material	ASA Filament	38.46
	PETG Filament	37.98
	OTS Parts	1,193.75
Manufacturing	Adjustments- Misc.	400
	Sewing	0.96
	Cure, Room Temperature	0.01
Assembly	Assemblers and Fabricators	12.47
Total		1,683.63

Cost Summary

Cost Table: Batch Production of 100

- Several OTS parts ordered in bulk would have excess units that would be added to the company inventory to be used in next mass production.
- Dividing the total cost by 100, it can be determined that the COGS decreases when mass producing the product.
 - Prototype COGS (\$1,683.63) > Mass Production COGS (\$835.03)

	Material/Process	Cost (\$)
Material	OTS Parts	82,352.58
Manufacturing	Injection Mold by Xometry®	-
	Sewing	96
	Cure, Room Temperature	0.60
Assembly	Assemblers and Fabricators	1,052.97
Total		-

Cost Summary

Gross Margin Percentage (GM%) of Batch Manufacturing

- COGS= \$835.03 (+ manufacturing cost by Xometry)
- Selling Price= \$3,500
- Gross Margin= \$2,664.97
- GM%=76.1%
 - Note: This calculation does not consider manufacturing and assembly cost because we outsourced production manufacturing with Xometry and are still awaiting a quote.

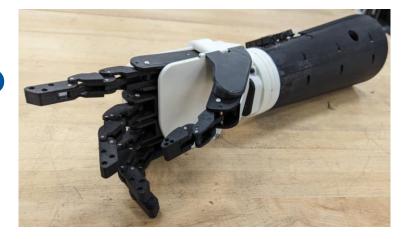
A GM% of greater than approximately 45% is acceptable for the industry our product would fall under.

Department of Mechanical & Aerospace Engineering

Future Improvements

- Scaling down the entire device
- > AI object identifier feature
- Force sensor and grip material on fingers
- Custom PCB
- Universal bolt driver size
- > Overall aesthetics

Why TechARM[™]?


Novel abduction/adduction feature

> Adjustability

 \succ Low cost

QUESTIONS?

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE