

The Si-Moo-LatorTM

EML4502 Mechanical Engineering Design III, Spring 2024

SiMooLation Gators™

MTOB-1: Louis Bollaerts, Elizabeth Campa, Patrik Raguz, Mahzen Babekir, Andrew Kaye, Andrew Montiegel, David Reyes

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Agenda

-

Hedgehog concept	3
Key product specifications	5
Testing Deliverables	10
Key features of the SiMooLator™	13
Evolution of the design	20
CAD rendering	23
Cost Summary	24
Product advantages	27
Conclusion	

-

2

Hedgehog Concept

<u>**Task:</u>** Develop, build, test, and evaluate a cattle digestion simulator unit that meets or exceeds the performance of the legacy unit currently in use.</u>

Passion

Ensuring comfort and committed to reducing contamination.

Best

Creating a usercentered design focused on product cleanliness and ease of cleaning.

Economics

Selecting high quality, appropriate materials to minimize the cost per cleaning cycle.

3

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Hedgehog Concept

Passion

Ensuring comfort and committed to reducing contamination.

Best

Creating a usercentered design focused on product cleanliness and ease of cleaning. The Si-Moo-Lator was designed with simplified features from the original design to reduce the number of components that must be cleaned. Additionally, all material selection is based around anticorrosion and ease of **Economics**aning.

Selecting high quality, appropriate materials to minimize the cost per cleaning cycle.

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Key Product Specifications

- Lid Design:
 - Motor integration for stirring mechanism
 - O-ring
- Filter System:
 - Replaced zip-tie method with stainless-steel casing
- Heating Mechanism:
 - Replaced submerged heater with flexible heaters for optimized heat distribution
- Base:
 - Removable plate for enhanced accessibility and ease of maintenance
- Material:
 - Stainless-steel for its corrosion resistance and easy cleaning

Key Specifications: Overall Unit

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Key Specifications: The Lid

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Key Specifications: The Vessel

Key Specifications: The Base

9

Protocol #1: Ease of cleaning

- Measuring: Cleaning efficiency and accuracy.
- Result: Post cleaning swab showed no growth. Cleaning only took 3.5 minutes.

Before growth

Petri dishes showing contamination

Protocol # 2: Temperature control

- Measuring: Temperature consistency.
- Results:
 - PID Controller showed success
 - Water temperature remained within acceptable range

Protocol # 3: Mixing ability

- Measuring: How long it took for the solution to fully emulsify
- Result: Passed protocol

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Calculation justification: Motor selection

Parameter	Quantity	Unit
Viscosity (µ)	350	сР
	0.35	Pa∙s
Density (p)	1380	kg/m ³
Impeller diameter (D)	0.08	m
Rotational speed (N)	150	RPM
	15.708	Rad/sec
Power number (N _P)	3	
Impeller type	Cross Blade	

$$Re = \frac{\rho ND^2}{\mu}$$

$$Re = \frac{\left(\left(1380 \left[\frac{kg}{m^3}\right]\right) \cdot (150[RPM]) \cdot (0.08 \, m)\right)}{0.35 \left[Pa \cdot s\right]} = 3785.14$$

$$P = N_P \cdot \rho \cdot N^3 \cdot D^5$$

$$P = 3 \cdot \left(1380 \left[\frac{kg}{m^3}\right]\right) \cdot (15.708 \left[Rad/sec\right])^3 \cdot (0.08 \, [m])^5 = 52.579 \, W$$

$$T = \frac{P}{W} = \frac{P}{\frac{2 \cdot \pi \cdot N}{60}} = \frac{30 \cdot P}{\pi \cdot N}$$

$$T = \frac{52.579 \, [W]}{15.708 \left[Rad/sec\right]} = 3.347 \, Nm$$

Motor Control

- Potentiometer Input
 - Variable Resistance
- PWM Signal Generation
 - Simulation of Analog Output
- Mapping Analog Input to PWM
 - 10-bit to 8-bit

Motor Desired vs Actual RPM

- Stir Speed Customer Need
 - 10-150 RPM
- Setting Desired RPM
- Measuring Actual RPM
- Solution:
 - Mapping maximum motor effort to maximum RPM
- Proposed improvement:
 - Encoder application

• 10K Ohm

Potentiometer

Arduino Nano

I2C LCD

L298N Motor Driver19.1 V Motor

Subsystem 2: Motor

Calculation justification: Stick on heater

Calculation justification: Internal temperatures of control box

Heat transfer overview:

- Purpose:
 - Predict temp within base assembly (system) to confirm safe operation of electronics.
 - Maximum Allowable Temp = 55°C (102 °F) (PID Temp Controller)
- Assumptions:
 - Isolated system with uniform temperature distribution
 - Ideal gas behavior
 - Constant material properties and geometry
 - Heating Pads transfer 100% of heat to top of system
 - Linear interpolation where applicable
 - Worst case values selected from referenced data ranges

Calculation justification: Internal temperatures of control box

Heat transfer summarized:

$$\dot{W}_{out} - \dot{W}_{in} = \dot{Q}_{in} - \dot{Q}_{out}$$
$$(\dot{W}_{out}) - (\dot{W}_{in}) = \left((T_v - T_b) \frac{k A_v}{L} \right) - \left(h A_T (T_b - T_\infty) \right)$$
$$T_b \left(\frac{k A_v}{L} - h A_T \right) = \dot{Q}_{out} - \dot{Q}_{in} + T_v \left(\frac{k A_v}{L} \right) + T_\infty (h A_T)$$
$$T_b \approx 44.08^{\circ}C (111.35^{\circ}F)$$

- Notes:
 - W_{out} done by motor and 2 heating pads (manufacturer specs)
 - \dot{W}_{in} from standard nominal US voltage (+5%) and current (15A)
 - \dot{Q}_{in} from T_v and T_b junction (vessel base (A_v))
 - \dot{Q}_{out} is the summed convective transfer of boundary walls (A_T)

Evolution of: The overall product

Evolution of: The lid

Iteration #1

Iteration #2

Iteration #3

Iteration #4

Iteration #5

Iteration #6

Evolution of: The filter skeleton

Iteration #1

Final Iteration

CAD Overview

Cost Analysis

- Budget usage for OTS parts: \$1301.03 / \$1500
- Single prototype vs. Batch Manufacturing Run
- Total Cost

$$C = C_{OTS} + C_{assem} + C_{mfg}$$

OTS Cost

$$C_{OTS} = C_1 + C_2 + \cdots + C_{47}$$

Manufacturing Cost

$$C_{mfg} = C_1 + C_2 + \cdots + C_{11}$$

Assembly Cost

 $C_{assem} = t_{assem} \times \$19.10/hr$

Cost Analysis

Single prototype vs. Batch Manufacturing Run

Cost Type	Single Prototype	Batch Manufacturing Run Cost per Unit
OTS Parts	\$1,910.25	\$1,427.78
Manufacturing	\$127.05	\$38.89
Assembly	\$32.09	\$32.09
Total	\$2,069.39	\$1,498.76

Cost Analysis

Product Price Analysis:

Overall Cost

Cost Type	Estimated Amount		Breakeven Analysis
Total Product Cost	\$1,498.76	\$600,000 \$500,000	
Variable Cost (25% T.P.C)	\$375	\$400,000	
Rent (annual)	\$28,000	\$300,000	
Business Insurances (annual)	\$7,836	و \$200,000 \$100,000	
Die Cast Machines	\$60,000	\$0 (
Additional facility setup costs	\$50,000	(\$100,000) (\$200,000)	Units Sold

Price set at \$2800, for 1000 units, M.o.P is 41.28%

Why choose the SiMooLator™?

LEGACY MODEL	The SiMooLator™
Magnetic stirring mechanism: Unreliable readouts, failed, magnets lost magnetism over time.	Top loaded stirring mechanism: Accurately control using the potentiometer, easy to control, easy repairability.
Submerged heating element: dangerous if powered on by accident, unreliable, needed maintenance often.	Stick on heating element safe to handle, low risk of misuse, reliable.
Zip ties for filter mesh: one	Filter skeleton: reusable a

time use, could contaminate easy to clean, stainless steel, liquid, required more effort.

and durable.

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE