

MT0C-1

April 23rd, 2024 MAE-A-221

Daniel Hoffman, Jorge Arredondo, Jonathan Ueberschaer, Jake Greenwell, Abigail Lopez Bonifacio, Samuel Jones, Eoin Mahood, Dylan King, Cooper Holcomb

Astro Restoration Project

Outline and Table of Contents

- Hedgehog Concept: 4
- Key Product Specifications: 5-9
- Key Features:10-23
- Design Highlight: 24-28
- Documented Evolution: 29-39
- Exploded CAD Views: 40-43
- Cost Table Summary: 44
- Why Us?: 45
- Conclusion: 46

Hedgehog Concept

 Our goal was the creation of a simple design that can show the aesthetics of the payload while being accurate in all engineering decisions.

Full Scale Key Product Specifications

- Safely hold & and secure the fully integrated Astro Cruciform, with the full telescope complement and associated payload hardware. Estimated total weight is ~8,000 lbs. A minimum 3.0 Factor of Safety.
- Support rotation of the integrated payload from the horizontal, vertical, or intermediate position to accommodate both integration activates and exhibition display.
- Concepts Shall include possible use of the stand for transportation of the payload from the USRRC to the Smithsonian's National Air & Space Museum.
- Support Tilting of Astro so that the internal payload will be visible to exhibit visitors.
- Total cost of the full-scale ADS shall **not exceed \$25k** (note: turntable is customer provided, not part of total cost).
- Museum max height: 300 Inches or 25 Feet.
- In addition to Vertical & Horizontal, fixed angles for static tilt positions (15/30/45 deg from horizontal).
- Capability to secure the Integrated Payload Cruciform independent of the tilt mechanism used (e.g. lock pins) (Note: tilt operations will only be performed occasionally as required by the ARP team).
- ADS conforms to multiples weights & CGs to reflect various Astro Cruciform configuration.
- **Two fault tolerant** requirement for any potential loss of tilt angle during static display

1/5 Scale Key Product Specifications

- A dimensionally accurate 1/5 scaled model of the Astro Integrated Cruciform Payload.
- A scaled model of the ASTRO Integrated Cruciform Display Stand(ADS) to hold the Astro payload 1/5 scale model and rotate it from vertical to horizontal.
- A functional turntable sized to rotate the 1/5 scale model ADS and Astro payload 360 degrees.
- An intuitive control panel for visitors as young as 5 years old.
- The scaled ASD and turntable shall utilize full-scale electrical and mechanical components where applicable.

Render of Full Scale Model

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Render of 1/5 Scale Model

8

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Built Prototype

-

Key Features

- Forklift Stable
- Configurable Cg's and Tipping
- Museum Height Requirements
- Linear Actuators
- Locking Pins
- Turn Table
- Electrical Diagrams

Forklift Stable

11

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING -

Configurable CG's and Tipping

ltem	Weight (Ibs)	CG, X (in)	CG, Y (in)	CG, Z (in)	Configuration	Weight (lbs)
Composite Astro	6601	46.2	1	0.4	Composite	6601
System					Composite-HUT-UIT	4230
HUT	1555	44.4	-16.2	25.1	Composite-HUT-UIT-IRS	3597
UIT	816	46.3	25.3	21		
IRS	633	34.8	27	-31.1	Assumed Mass for Maximum Load	8000

$$CG_x = \frac{\sum W_i x_i}{\sum W_i}$$
, $CG_y = \frac{\sum W_i y_i}{\sum W_i}$, $CG_z = \frac{\sum W_i z_i}{\sum W_i}$

Item	Weight (lbs)	CG, X (in)	CG, Y (in)	CG, Z (in)
Composite Astro System	6601	46.2	1	0.4
Composite-HUT-UIT	4230	46.842	2.635	-12.654
Composite-HUT-UIT-IRS	3597	48.962	-1.652	-9.408
Assumed Mass for Maximum Load	8000	46.2	1	0.4

Museum Height Requirements

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

13

Linear Actuators

- Designed to pitch the payload to a desired orientation
- Two Thomas Electrak XD Actuators (Model B250)
- Each capable of 25,000 N (5620.22 lbs) loads

- Torque required :113,600 lbs-in
- Torque capable: 138,950 lbs-in

Linear Actuators - Math

Locking Pins

- Designed to assist with keeping payload in desired orientation by mitigating stress on other components
- 6"-Ø2" center part; points out for ease of insert; cap and pin hole to be secured into place

Locking Pins - Math

CAS

2,994

5,672

Turntable

- Designed to be low-profile and discrete so as not to distract from the display.
- Powered using a compliant rubber wheel attached to a 12V motor.

Electrical Schematic – Controller

- Separate Bluetooth Controller
- Powered with a replaceable battery
- Button and Potentiometer states are transmitted to the receiver Bluetooth module on the stand
- States are put into a string and are transmitted through the Arduino Serial connection

Electrical Schematic – Display

- Motor controller for each linear actuator
- Power supplied from the 12V outlet
- Receives String from Bluetooth module and uses it to set motor states
- Controls Linear Actuator position with a bang-bang controller

Perf Board Schematic - Controller

- Main items that are attached are resistors, voltage divider
- Buttons/Potentiometers are attached to the perf board through wires as they are glued to the controller

Perf Board Schematic - Display

- Connects the 5V output pin of the Arduino:
 - VCC, R_EN, and L_EN pins on the motor driver module
 - 5V motor wire of the position feedback circuit on the motor.
 - Bluetooth device
- Connects the GND pin of the Arduino:
 - Motor Driver 1, 2 and 3
 - Bluetooth Device GND

Voltage and Current specs for Full and 1/5 Scale Linear Actuators

		1/5 scale Linear actuator	Full-scale Linear Actuator
BTS7960	Voltage and	LACT6P-12V-20 Light-Duty Linear Actuator with Feedback	Electrak [®] XD Linear Actuators
Motor Driver	max allowed current	www.pololu.com	
	6 - 27 V	12 V	24 V
	43 A	3.2 A	30 A

Design Highlights

- Horizontal Locking Mechanism
- Bluetooth Controller
- Locking Mechanism
- Forklift Transportable Base
 Plate

Horizontal Locking Mechanism

Bluetooth Controller

- Utilizing HC-05 Bluetooth Module
- Remotely connect the controller and the motors/actuators on the turntable
- Removes need for another wired connection
- Aesthetically pleasing
- Easily replaced and accessible for maintenance
- Connection up to 100 meters away

Locking Mechanism

Full Scale Locking Mechanism

1/5 Scale Locking Mechanism

Forklift Transportable Base Plate

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Design Evolution

- Changes in full-scale model
 - Changes were made due to customer needs, safety, and simplicity
- Changes in 1/5th scale model
 - Changes were made to increase manufacturability in lab and to represent the functions of the fullscale model

Evolution of Full-Scale Model

- Moved support beams so that linear actuators were not going through them and changed thickness
- Changed how the shaft works and its dimensions
- Added locking mechanism
- Changed the size of the baseplate

Support Beams - Full-Scale Evolution

- Increased manufacturability, added to ease of maintenance, and kept simple by removing hole where actuator goes through
- Changed the thickness of the support beam to meet a factor of safety of 3

Support Beams - Math

Location of concern for the support beams (lower outside edge)

	$\sigma_{x,normal} = \frac{F}{A} \sigma_{x,bending} = \frac{Mc}{I_{yy}}$	
Cross-Section area of beam	$A = A_w - A_o = hb - (h - 2t)(b - 2t)$ $I_{yy} = I_{yy,w} - I_{yy,o} = \frac{1}{12}(hb^3) - \frac{1}{12}((h - 2t)(b - 2t))$	$(2t)^{3}$
h-2t h-2t	$\sigma' = \sqrt{\sigma_x^2 + \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} = \frac{S_y}{n}$	- b = 0.3098 m - h = 0.1651m - Only normal stress
b	$\sigma_{\rm x} = \sigma_{x,bending} - \sigma_{x,normal}$ $t = 0.0023871 m$ $t = 0.094" \approx 0.125" = 1/8"$	in x-direction - n = 3 - F = 42,696 /2 N - M = 55,308 /2 N-m
Payload		- Sy = 210 MPa

Payload Configuration	Weight [kg]	Force [N] * 2	Moment [N-m] * 2
Full Payload	4,357	42,696	55,308
CAS + HUT + UIT	4,069	39,876	51,663
CAS + HUT	3,699	36,249	46,964
CAS	2,994	29,338	38,010

32

Shaft - Full-Scale Evolution

- Increased diameter to meet factor of safety of 3
- Welded into transverse beams
- Attached to support beams via bearings
- Attachment changes allow for use of locking pin

Shaft - Math

Locations 1 and 2 are areas of concern for failure

$\tau_{yx} = \frac{VQ}{I_{xx}t}; Q = A\frac{\overline{y}}{2}; V = F$	$I_{xx} = \frac{\pi d^2}{64}$
$\sigma_{y,bending} = \frac{Mc}{I_{xx}}$	$A = \pi r^2$
$\sigma' = \sqrt{\sigma_x^2 + \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{yx}^2}$	$\frac{1}{2} = \frac{S_y}{n}$
At point 1, only normal force in	At poi
the y-direction from bending	direct
occurs	in yx-p
$\sigma_{y,1} = \sigma_{y,\text{bending (M)}} + \sigma_{y,\text{bending (F)}}$ $\sigma_{y,1} = \frac{Mc}{I_{xx}} + \frac{(F * 0.1778m)c}{I_{xx}}$	r = 0
r = 0.092019 m = 3.62"	

- n = 3 - F = 42,696 /2 N - M = 55,308 /2 N-m - Sy = 210 MPa

At point 2, normal force in the ydirection from bending and shear in yx-plane occurs

r = 0.079545 m = 3.13"

Payload Configuration	Weight [kg]	Force [N] * 2	Moment [N-m] * 2
Full Payload	4,357	42,696	55 <i>,</i> 308
CAS + HUT + UIT	4,069	39,876	51,663
CAS + HUT	3,699	36,249	46,964
CAS	2,994	29,338	38,010

$$r = 3.75''$$

 πd^4

Locking Mechanism - Full-Scale Evolution

- Was not used previously
- Added extra layer of security for payload orientation
- Helps keep payload in desired angle
- Relieves stress from actuators while stationary
- Meets customer needs
- Meets factor of safety of 3

Evolution of 1/5th – Scale Model

 Changed everything to utilize nominal sized parts and ensure manufacturability

Notable Changes - Scaled Model Evolution

37

Electrical Diagrams – Notable Changes

- Moved motor and linear actuators to the same circuit with motor controller
- Use of dedicated controller with Bluetooth

Electrical Diagrams – Notable Changes

- Potentiometer moved to the controller, utilization of multiple motor controllers to avoid use of more Arduinos
- Proper power supplied by the wall outlet

Full Scale Exploded CAD View

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

1/5 Scale Exploded CAD View

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Full Scale Exploded CAD View

1/5 Scale Exploded CAD View

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

Cost Table Summary

1/5 Scale Cost Breakdown
 OTS Parts - \$795.40
 Manufacturing - \$368.62
 Assembly - \$44.51
 Total - \$1,208.53

Full Scale Cost Breakdown

 OTS Parts - \$7,844.24
 Manufacturing - \$15,038.04
 Total - \$22,882.28

Why us?

-

UNIVERSITY OF FLORIDA HERBERT WERTHEIM COLLEGE OF ENGINEERING

MECH MOTION DYNAMICS