MTOC-3 Celestial Interactions

CEO: Matthew Stutzman COO: Jacob Elorrieta CFO: Samuel Theis

Members: Tyler Austhof, Sage Bachus, Brendan McMurrer, Tony Pham, Raquel Schlicht, Grant Trautweiler, James Wardlaw

Agenda

- Original design and hedgehog concept
- Design Revisions and prototype
- Final design
- Structural analysis
- Manufacturing process
- Cost analysis
- Controls and systems

Hedgehog Concept

Design Approach

The celestial interactions team aimed to develop a design for the astro display stand that was as simple as possible, while maintaining a minimal aesthetic to avoid detracting from what is important within the display.

Design Revisions and Prototype

Key Components

- 1. 1/5 scaled prototype of the Astro Cruciform payload
- 2. An Astro display stand (ADS) to hold and tilt the 1/5th scale model payload
- 3. A turntable to display and rotate the product
- 4. An intuitive control panel

Key Design Requirements

- Must account for variable CG
- Cost must not exceed \$25,000
- Must be able to lock at 15°, 30°, and 45°
- Must be two fault tolerant
- Assembled width of for transportation \leq 104.3in
- Assembled width for display \leq 120.0in
- Structural components $F_s \ge 3$

Vertical Support Revisions

- Angled to allow trunnion clearance in vertical position
- Added a second support member
- Replaced rotary damper with locking pin

Baseplate Revisions

- Rounded corners for safety and aesthetics
- Winch pedestal removed
- Load is placed under columns

Driving System Revisions

 Removed the winch system to not be reliant on CG

 Replaced cable with chains to prevent slippage

 Added driveshaft and second chain for failure protection

Notable Features

- Driving system: Motor actuated by a gear and chain system
- Two fault tolerant: Locking pins and dual chain system
- Safety covers on moving parts
- Set pin slots to lock at desired angle locations

1/5 Scale Model

Differences:

- Single Stepper motor
- Mounted control box on the baseplate
- 3D printed payload

Isometric View

1/5 Scale Model

Front View

1/5 Scale Controls

Turntable

- OTS with minimalistic design
- Battery powered and rechargeable
- Remote control with multiple operating methods

ADS

- 3-position switch to control rotation direction
- Programmable LCD screen
- Control box located near locking mechanism

1/5 Scale Electrical Components

- 24V, 3A external power supply
- Stepper motor and stepper driver
- Arduino microcontroller
- A voltage reducer provides 5V

Electrical System

- 90V DC motor drives movement system
- Normally closed limit switches and emergency stop
- Controller allows user to change speed and direction

Structural Calculations

Structural Calculations

Furthest CG Location

 $Z_{CG_{crit}} \frac{0.4 \text{ in } * 6601 \text{ lbs} - (1555 \text{ lbs})(25.1 \text{ in}) - (816 \text{ lbs})(21 \text{ in})}{(6601 \text{ lbs} - 1555 \text{ lbs} - 816 \text{ lbs})} = -12.65 \text{ in}$

Torque From Payload Weight

 $T = 4230 \ lbs * 12.65 \ in = 53509.5 \ lb \ in$

Table 7.1 Astro System and Selected Component CGs						
Description	Weight	CG Location (inches)				
	(lbs)	X _{CG}	Y _{CG}	Z _{CG}		
Composite Astro System	6,601	46.2	1.0	0.4		
HUT	1,555	44.4	-16.2	25.1		
UIT	816	46.3	25.3	21.0		
Integrated Radiator System	633	34.8	27.0	-31.1		
Three configurations to be considered:						
 Composite Astro System 	า					

2. Composite minus HUT and UIT

3. Composite minus HUT, UIT, and IRS

Note: Table data is to be used only for determination of various CGs. Governing weight of Astro System is provided in paragraph 7.1.

Horizontal Force on Support

 $F_{horz} = \frac{T}{y_{dist}} = \frac{53509.5 \ lb \ in}{31.3 \ in} = 1715.05 \ lbs$

Per Side
$$F_{horz_{side1}} = F_{horz_{side2}} = \frac{F_{horz}}{2} = 857.5 \ lbs$$

Structural Calculations– Vertical Supports

 $\cos(33) = \frac{\overline{F_{horz}}}{\overline{F_{chain}}} = \frac{1715.05 \ lbs}{\overline{F_{Chain}}}$ \bigcirc **Force Generated** $F_{chain} = 2044.96 \, lbs$ by Chain **F** 33° $F_{chain_{side1}} = F_{chain_{side2}} = 1022.48 \ lbs$ $sin(33) = \frac{F_{vert}}{F_{chain}} = \frac{F_{vert}}{2044.96 \, lb}$ **Decomposed to** Vertical 31.3 in $F_{vert} = 1113.77 \ lb$ Component $\overline{F_{vert_{side1}}} = \overline{F_{vert_{side2}}} = 556.88 \, lb$ Ζ

Х

Structural Calculations– Vertical Supports

Structural Calculations– Vertical Supports

Factor of Safety – Major Components

Part	Expected load (psi)	Max load (psi)	FoS
Vertical Supports	6169	36,600	5.9
Vertical Support Buckling	2786.4	301,466	108
Trunnion Connector	1525.5	36,600	24.0
Trunnion Bolt	12,200	36,600	>3.0
Motor System	1809.3	8800	4.0

Manufacturing and Cost

Manufacturing Process- Baseplate

- The base plates were cut on an abrasive water jet
- Pre-cut square tube bar stock was used to separate the top and bottom sheet
- Due to the limited welding clearance, square groove and tack welds were utilized
- Holes were made in the top plate for the driving system and the vertical support mounting plates

Manufacturing Process- Vertical Supports

- The short and long vertical supports achieved angular cuts using a mill with THRU holes produced using a drill press
- Each fastener plate was machined on a water jet, with THRU holes cut using a drill press
- Short and long vertical supports were welded to each fastener plate

Manufacturing Process- Locking Mechanism

- The locking mechanism was machined using a water jet
- It was welded to the vertical support in a predefined position
- Clevis and cotter pins were purchased to pair alongside the manufactured parts

Assembly Process- Driving System

- The gears, bearings, barrels, and motor were all fastened before the bearing blocks were welded in place
- Chain sections were sized first and tensioned during assembly
- The motor wiring was run between the top and bottom plate to the control box

Ease of Transportation Features

- The ADS base is compatible with the use of forklifts
- Eyebolt hooks on the corners of the stand to aid in the assembly and transportation process
- A stand sizing that falls within the maximum width for standard transportation

Costs

1/5th Scale Prototype Cost				
<u>Subsystem</u>	Approximate Cost			
Structural Support	\$380			
Driving System	\$450			
Controlling System	\$105			
Turntable and Battery Backup	\$255			
Misc	\$80			
Total	\$1260			

1/5th Scale Prototype Production Cost

<u>Subsystem</u>	Approximate Cost
Holes Drilled	\$17.50
Cuts Made	\$35
Waterjet Cuts	\$36
Welding	\$40
<u>Total</u>	\$128.50

Final Specifications

- Estimated Material Cost: \$12,302
- Average machinist in Florida \$23.50 per/hour
- Number of Components: 155 (including fasteners)
- Estimated manufacturing and assembly time: 50 hours
- Total cost **\$13,477**

Summary/Conclusion

- Structurally viable design for CG variations
- Minimalistic design enables focus on the payload
- Locking and chain safety mechanisms
- Total estimated cost of **\$13,477**

Questions

Structural Calculations– Vertical Support Buckling Calculations

$$P_{cr} = \frac{\pi^2 EI}{(Kl)^2}$$

$$P_{cr} = \frac{\pi^2 * 2.9 * 10^7 * 17.91}{(2.0 * 65.2)^2} = 301,466 \ lbs$$

$$N = \frac{P_{cr}}{Axial \ Load} = \frac{301,466}{2786.4} = 108$$

Structural Calculations– Trunnion Connector

Structural Calculations– Trunnion Connector

$$\sigma_{yy} = \frac{|M_{max}|c}{I} = \frac{(10,929 \ lb \ in)(2.5 \ in)}{17.91 \ in^4} = 1525.5 \ psi$$

$$N_{VM} = \frac{\sigma_y}{\sigma_{VM}} = \frac{36,600 \ psi}{1525.5 \ psi} = 24.0$$

Structural Calculations– Trunnion Bolt

$$\tau_{ave} = \frac{\frac{1}{2}F}{A}$$

$$\sigma_{allow} = \frac{\sigma_y}{N} = \frac{36,600 \ psi}{3} = 12,200 \ psi$$

12,200
$$psi = \frac{\frac{1}{2}F}{A} = \frac{\frac{1}{2}(1022.5 \ lbs)}{\frac{\pi D^2}{4}}$$

D = 0.231 in

Motion System Calculations

$$F_{chain,center} = \frac{5880 \ lb \cdot in}{3.25 \ in} = 1809.3 \ lb$$

$$FOS = \frac{F_{WLL}}{F_{chain,center}} = \frac{8800 \ lb}{1809.3 \ lb} = 4.86$$

* WLL = working load limit of ANSI 100 chain

$$F_{chain,sides} = \frac{5880 \ lb \cdot in}{3.25 \ in} = 1809.3 \ lb$$

$$FOS = \frac{F_{WLL}}{F_{chain,sides}} = \frac{8800 \ lb}{1809.3 \ lb} = 4.86$$

